ОГЭ 2025. Экзаменационная работа состоит из двух частей, включающих в себя 25 заданий. Часть 1 содержит 19 заданий, часть 2 содержит 6 заданий с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут)
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2025 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ОГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Автомобильное колесо, как правило, представляет из себя металлический диск с установленной на него резиновой шиной. Диаметр диска совпадает с диаметром внутреннего отверстия в шине. Для маркировки автомобильных шин применяется единая система обозначений. Например, 195/65 R15 (рис. 1). Первое число (число 195 в приведённом примере) обозначает ширину шины в миллиметрах (параметр B на рисунке 2). Второе число (число 65 в приведённом примере) — процентное отношение высоты боковины (параметр H на рисунке 2) к ширине шины, то есть 100 H B . Последующая буква обозначает тип конструкции шины.
В данном примере буква R означает, что шина радиальная, то есть нити каркаса в боковине шины расположены вдоль радиусов колеса. На всех легковых автомобилях применяются шины радиальной конструкции. За обозначением типа конструкции шины идёт число, указывающее диаметр диска колеса d в дюймах (в одном дюйме 25,4 мм). Таким образом, общий диаметр колеса D легко найти, зная диаметр диска и высоту боковины. Возможны дополнительные маркировки, обозначающие допустимую нагрузку на шину, сезонность использования, тип дорожного покрытия и другие параметры. Завод производит внедорожники определённой модели и устанавливает на них колёса с шинами маркировки 175/60 R15.
1. Завод допускает установку шин с другими маркировками. В таблице показаны разрешённые размеры шин. Шины какой наименьшей ширины можно устанавливать на автомобиль, если диаметр диска равен 16 дюймам? Ответ дайте в миллиметрах.
2. На сколько миллиметров радиус колеса с шиной маркировки 195/60 R14 больше, чем радиус колеса с шиной маркировки 165/70 R14?
3. На сколько миллиметров уменьшится диаметр колеса, если заменить колёса, установленные на заводе, колёсами с шинами маркировки 195/45 R16?
4. Найдите диаметр колеса автомобиля, выходящего с завода. Ответ дайте в миллиметрах.
5. На сколько процентов увеличится пробег автомобиля при одном обороте колеса, если заменить колёса, установленные на заводе, колёсами с шинами маркировки 195/55 R15? Результат округлите до десятых.
10. В фирме такси в данный момент свободно 15 машин: 4 чёрных, 3 жёлтых и 8 зелёных. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет жёлтое такси.
14. Водитель автомобиля начал торможение. За секунду после начала торможения автомобиль проехал 16 м, а за каждую следующую секунду он проезжал на 4 м меньше, чем за предыдущую. Сколько метров автомобиль прошёл до полной остановки?
16. Треугольник ABC вписан в окружность с центром в точке O. Точки O и C лежат в одной полуплоскости относительно прямой AB. Найдите угол ACB, если угол AOB равен 153°. Ответ дайте в градусах.
18. На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите длину отрезка AB по данным чертежа.
19. Какое из следующих утверждений верно? 1) Диагонали ромба точкой пересечения делятся пополам. 2) Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу. 3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности. В ответ запишите номер выбранного утверждения.
21. Два автомобиля одновременно отправляются в 990- километровый пробег. Первый едет со скоростью на 20 км/ч большей, чем второй, и прибывает к финишу на 2 ч раньше второго. Найдите скорость первого автомобиля.
23. Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD = 33, BC = 18, CF : DF = 2 : 1.
24. В выпуклом четырёхугольнике ABCD углы DAC и DBC равны. Докажите, что углы CDB и CAB также равны.
25. В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 5 : 3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC = 8.
Вам будет интересно:
ОГЭ по математике 9 класс 2025. Новый тренировочный вариант №26 (задания и ответы)