22.10.2020 Тренировочная работа №1 по информатике 11 класс ИН2010101, ИН2010102, ИН2010103 и ИН2010104

75,00

  • Официальная работа от СтатГрад
  • Работа включает в себя два официальных варианта;
  • Работа соответствует всем последним требованиям и изменениям от ФИПИ;
  • Задания, ответы и критерии проверки будут доступны сразу после оплаты;
  • Как купить и скачать на нашем сайте.
Категория:

Некоторые задания  с работы:

Для передачи сообщений, содержащих только буквы К, Л, М, Н, О, П, Р, решили использовать неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, использованные для некоторых букв:К – 0001, Л – 01, П – 001,  Р – 1110. Какое кодовое слово надо назначить для буквы Н, чтобы код удовлетворял указанному условию и при этом длина слова ПОРОЛОН после кодирования была наименьшей? Если таких кодов несколько, укажите код с наименьшим числовым значением.
Ответ: ___________________________.


Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. Складываются все цифры полученной двоичной записи. В конец записи (справа) дописывается остаток от деления суммы на 2.
3. Предыдущий пункт повторяется для записи с добавленной цифрой.
4. Результат переводится в десятичную систему.
Пример. Дано число N = 13. Алгоритм работает следующим образом:
1. Двоичная запись числа N: 1101.
2. Сумма цифр двоичной записи 3, остаток от деления на 2 равен 1, новая запись 11011.
3. Сумма цифр полученной записи 4, остаток от деления на 2 равен 0, новая запись 110110.
4. Результат работы алгоритма R = 54.
При каком наименьшем числе N в результате работы алгоритма получится R > 170? В ответе запишите это число в десятичной системе счисления.
Ответ: ___________________________.


Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABC…Z). Определите количество строк, в которых буква Eвстречается чаще, чем буква A.
Ответ: ___________________________.


Назовём нетривиальным делителем натурального числа его делитель, не равный единице и самому числу. Например, у числа 6 есть два нетривиальных делителя: 2 и 3. Найдите все натуральные числа, принадлежащие отрезку [123456789; 223456789] и имеющие ровно три нетривиальных делителя. Для каждого найденного числа запишите в ответе его наибольший нетривиальный делитель. Ответы расположите в порядке возрастания.

Ответ:


Для передачи сообщений, содержащих только буквы К, Л, М, Н, О, П, Р, решили использовать неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, использованные для некоторых букв: К – 11, Л – 000, П – 0010, Р – 1011. Какое кодовое слово надо назначить для буквы М, чтобы код удовлетворял указанному условию и при этом длина слова МОЛОКО после кодирования была наименьшей? Если таких кодов несколько, укажите код с наименьшим числовым значением.
Ответ: ___________________________.


Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. Складываются все цифры полученной двоичной записи. В конец записи (справа) дописывается остаток от деления суммы на 2.
3. Предыдущий пункт повторяется для записи с добавленной цифрой.
4. Результат переводится в десятичную систему.
Пример. Дано число N = 13. Алгоритм работает следующим образом:
1. Двоичная запись числа N: 1101.
2. Сумма цифр двоичной записи 3, остаток от деления на 2 равен 1, новая запись 11011.
3. Сумма цифр полученной записи 4, остаток от деления на 2 равен 0, новая запись 110110.
4. Результат работы алгоритма R = 54.
При каком наименьшем числе N в результате работы алгоритма получится R > 154? В ответе запишите это число в десятичной системе счисления.
Ответ: ___________________________.


Набор данных состоит из пар натуральных чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел делилась на 3 и при этом была минимально возможной.
Входные данные
Первая строка входного файла содержит число N – общее количество пар в наборе. Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000.
Пример входного файла
6
1 3
5 12
6 9
5 4
3 3
1 1
Для указанных данных искомая сумма равна 21.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.
Ответ:

Поделиться: